Logarithmic Voronoi polytopes for discrete linear models

Yulia Alexandr (UC Berkeley)

Algebraic Statistics 2022 University of Hawai'i at Manoa May 19, 2022

Yulia Alexandr

Logarithmic Voronoi polytopes

May 19, 2022

→

1/12

Discrete linear models

A *linear model* is given parametrically by nonzero linear polynomials.

Theorem (A., Heaton, 2021)

Let \mathcal{M} be a linear model. Then the logarithmic Voronoi cells are equal to their log-normal polytopes.

Discrete linear models

A *linear model* is given parametrically by nonzero linear polynomials.

Theorem (A., Heaton, 2021)

Let \mathcal{M} be a linear model. Then the logarithmic Voronoi cells are equal to their log-normal polytopes.

Any *d*-dimensional linear model inside Δ_{n-1} can be written as

$$\mathcal{M} = \{ c - Bx : x \in \Theta \}$$

where B is a $n \times d$ matrix, whose columns sum to 0, and $c \in \mathbb{R}^n$ is a vector, whose coordinates sum to 1.

Discrete linear models

A *linear model* is given parametrically by nonzero linear polynomials.

Theorem (A., Heaton, 2021)

Let \mathcal{M} be a linear model. Then the logarithmic Voronoi cells are equal to their log-normal polytopes.

Any *d*-dimensional linear model inside Δ_{n-1} can be written as

$$\mathcal{M} = \{ c - Bx : x \in \Theta \}$$

where B is a $n \times d$ matrix, whose columns sum to 0, and $c \in \mathbb{R}^n$ is a vector, whose coordinates sum to 1.

A *co-circuit* of B is a vector $v \in \mathbb{R}^n$ of minimal support such that vB = 0. A co-circuit is *positive* if all its coordinates are positive.

We call a point $p = (p_1, \ldots, p_n) \in \mathcal{M}$ is *interior* if $p_i > 0$ for all $i \in [n]$.

< □ > < 同 > < 回 > < 回 > < 回 >

Interior points

For an interior point $p \in \mathcal{M}$, the logarithmic Voronoi cell at p is the set

$$\log \operatorname{Vor}_{\mathcal{M}}(p) = \left\{ r \cdot \operatorname{diag}(p) \in \mathbb{R}^n : rB = 0, \ r \ge 0, \ \sum_{i=1}^n r_i p_i = 1 \right\}.$$

Proposition (A.)

For any interior point $p \in M$, the vertices of $\log \operatorname{Vor}_{\mathcal{M}}(p)$ are of the form $v \cdot \operatorname{diag}(p)$ where v are unique representatives of the positive co-circuits of B such that $\sum_{i=1}^{n} v_i p_i = 1$.

Gale diagrams

Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ be a vector configuration in \mathbb{R}^d , whose affine hull has dimension *d*. Consider the matrix

$$A = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix}$$

Let $\{B_1, \ldots, B_{n-d-1}\}$ be a basis for ker(A) and $B := [B_1 \ B_2 \ \cdots \ B_{n-d-1}]$. The configuration $\{\boldsymbol{b}_1, \ldots, \boldsymbol{b}_n\}$ of row vectors of B is the *Gale diagram* of $\{\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n\}$.

Gale diagrams

Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ be a vector configuration in \mathbb{R}^d , whose affine hull has dimension d. Consider the matrix

$$A = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \boldsymbol{v}_1 & \boldsymbol{v}_2 & \cdots & \boldsymbol{v}_n \end{bmatrix}$$

Let $\{B_1, \ldots, B_{n-d-1}\}$ be a basis for ker(A) and $B := [B_1 \ B_2 \ \cdots \ B_{n-d-1}]$. The configuration $\{\boldsymbol{b}_1, \ldots, \boldsymbol{b}_n\}$ of row vectors of B is the *Gale diagram* of $\{\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n\}$.

Theorem (A.)

For any interior point $p \in M$, the logarithmic Voronoi cell at p is combinatorially isomorphic to the dual of the polytope obtained by taking the convex hull of a vector configuration with Gale diagram B.

Corollary

Logarithmic Voronoi cells of all interior points in a linear model have the same combinatorial type.

Proposition (A.)

Every (n - d - 1)-dimensional polytope with at most n facets appears as a logarithmic Voronoi cell of a d-dimensional linear model inside Δ_{n-1} .

< A > <

∃ ► < ∃ ►</p>

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

ヘロア 人間 アメヨア 人間アー

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

◆□ > ◆□ > ◆豆 > ◆豆 > ○

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

ヘロト ヘロト ヘヨト ヘヨト

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

◆□ > ◆□ > ◆豆 > ◆豆 > ○

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

◆□ > ◆□ > ◆豆 > ◆豆 > ○

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

◆□ > ◆□ > ◆豆 > ◆豆 > ○

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

ヘロア 人間 アメヨア 人間アー

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

ヘロト ヘロト ヘヨト ヘヨト

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

ヘロア 人間 アメヨア 人間アー

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

ヘロア 人間 アメヨア 人間アー

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [-2, -1, 1, 2]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [-2, -1, 1, 2]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

$$B = [-2, -1, 1, 2]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

$$B = [-2, -1, 1, 2]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

$$B = [-2, -1, 1, 2]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

$$B = [-2, -1, 1, 2]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

$$B = [-2, -1, 1, 2]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

$$B = [-2, -1, 1, 2]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

$$B = [-2, -1, 1, 2]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [-2, -1, 1, 2]^T$$

c = (1/4, 1/4, 1/4, 1/4)

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [-2, -1, 1, 2]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [-2, -1, 1, 2]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [-2, -1, 1, 2]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [-2, -1, 1, 2]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

$$B = [-2, -1, 1, 2]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

On the boundary

Theorem (A.)

Let \mathcal{M} be the d-dimensional linear model, obtained by intersecting the affine linear space L with Δ_{n-1} . Let $w \in \mathcal{M}$ be a point on the boundary of the simplex. If L intersects Δ_{n-1} transversally, then the logarithmic Voronoi polytope at w has the same combinatorial type as those at the interior points of \mathcal{M} .

∃ ► < ∃ ►</p>

Partial linear models

A *partial linear model* of dimension *d* is a statistical model given by a *d*-dimensional polytope inside the probability simplex Δ_{n-1} , such that not all facets of the polytope lie on the boundary of the simplex.

The intersection of the affine span of the polytope \mathcal{M} with the simplex Δ_{n-1} is a *d*-dimensional linear model \mathcal{M}' . We say that \mathcal{M}' extends \mathcal{M} .

Parial linear models

Proposition (A.)

Let \mathcal{M} be a partial linear model of dimension d with extension \mathcal{M}' . If p is a point in the relative interior of \mathcal{M} , then $\log \operatorname{Vor}_{\mathcal{M}}(p) = \log \operatorname{Vor}_{\mathcal{M}'}(p)$.

Let $p \in \partial \mathcal{M}$. Then $\log \operatorname{Vor}_{\mathcal{M}'}(p) \subseteq \log \operatorname{Vor}_{\mathcal{M}}(p)$, but in general this containment will be strict.

Let F be a facet of \mathcal{M} and $p \in F^{\circ}$. How to compute log Vor $_{\mathcal{M}}(p)$?

- Treat F as its own partial linear model with extension F' inside Δ_{n-1} .
- Then $\log \operatorname{Vor}_F(p) = \log \operatorname{Vor}_{F'}(p)$ is an (n d)-dimensional polytope.
- Only of those polytopes, \bar{Q}_p will intersect the interior of \mathcal{M} .

Proposition (A.)

Let p be a point in the relative interior of some facet F of M. Then $Q_p = \log \operatorname{Vor}_{\mathcal{M}}(p)$.

Partial linear models

What about other faces?

- Let F is a face of \mathcal{M} of dimension d k for some $k \geq 2$.
- *F* is the intersection of at least *k* faces $\{G_1, \dots, G_m\}$ of dimension d k + 1.
- Each log $Vor_{G'_i}(p)$ subdivides log $Vor_{F'}(p)$ into two polytopes.
- One will intersect G_i at an interior point. Call the other polytope Q_i .

Conjecture

Let p be a point in the relative interior of a (d - k)-dimensional face F of \mathcal{M} as above. Then $\bigcap_{i \in [m]} Q_i = \log \operatorname{Vor}_{\mathcal{M}}(p)$. In particular, if \mathcal{M} is in general position, dim $\log \operatorname{Vor}_{\mathcal{M}}(p) = (n - 1) - \dim F$.

Mahalo!

×	 ~	01/0100	
	~	exant	

・ロト ・四ト ・ヨト ・ヨト