Logarithmic Voronoi polytopes for discrete linear models

Yulia Alexandr (UC Berkeley)

Algebraic Statistics 2022
University of Hawai'i at Manoa
May 19, 2022

Discrete linear models

A linear model is given parametrically by nonzero linear polynomials.
Theorem (A., Heaton, 2021)
Let \mathcal{M} be a linear model. Then the logarithmic Voronoi cells are equal to their log-normal polytopes.

Discrete linear models

A linear model is given parametrically by nonzero linear polynomials.
Theorem (A., Heaton, 2021)
Let \mathcal{M} be a linear model. Then the logarithmic Voronoi cells are equal to their log-normal polytopes.

Any d-dimensional linear model inside Δ_{n-1} can be written as

$$
\mathcal{M}=\{c-B x: x \in \Theta\}
$$

where B is a $n \times d$ matrix, whose columns sum to 0 , and $c \in \mathbb{R}^{n}$ is a vector, whose coordinates sum to 1 .

Discrete linear models

A linear model is given parametrically by nonzero linear polynomials.
Theorem (A., Heaton, 2021)
Let \mathcal{M} be a linear model. Then the logarithmic Voronoi cells are equal to their log-normal polytopes.

Any d-dimensional linear model inside Δ_{n-1} can be written as

$$
\mathcal{M}=\{c-B x: x \in \Theta\}
$$

where B is a $n \times d$ matrix, whose columns sum to 0 , and $c \in \mathbb{R}^{n}$ is a vector, whose coordinates sum to 1 .

A co-circuit of B is a vector $v \in \mathbb{R}^{n}$ of minimal support such that $v B=0$. A co-circuit is positive if all its coordinates are positive.

We call a point $p=\left(p_{1}, \ldots, p_{n}\right) \in \mathcal{M}$ is interior if $p_{i}>0$ for all $i \in[n]$.

Interior points

For an interior point $p \in \mathcal{M}$, the logarithmic Voronoi cell at p is the set

$$
\log \operatorname{Vor}_{\mathcal{M}}(p)=\left\{r \cdot \operatorname{diag}(p) \in \mathbb{R}^{n}: r B=0, r \geq 0, \sum_{i=1}^{n} r_{i} p_{i}=1\right\}
$$

Proposition (A.)

For any interior point $p \in \mathcal{M}$, the vertices of $\log \operatorname{Vor}_{\mathcal{M}}(p)$ are of the form $v \cdot \operatorname{diag}(p)$ where v are unique representatives of the positive co-circuits of B such that $\sum_{i=1}^{n} v_{i} p_{i}=1$.

Gale diagrams

Let $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ be a vector configuration in \mathbb{R}^{d}, whose affine hull has dimension d. Consider the matrix

$$
A=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \cdots & \boldsymbol{v}_{n}
\end{array}\right] .
$$

Let $\left\{B_{1}, \ldots, B_{n-d-1}\right\}$ be a basis for $\operatorname{ker}(A)$ and $B:=\left[B_{1} B_{2} \cdots B_{n-d-1}\right]$. The configuration $\left\{\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right\}$ of row vectors of B is the Gale diagram of $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$.

Gale diagrams

Let $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ be a vector configuration in \mathbb{R}^{d}, whose affine hull has dimension d. Consider the matrix

$$
A=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \cdots & \boldsymbol{v}_{n}
\end{array}\right]
$$

Let $\left\{B_{1}, \ldots, B_{n-d-1}\right\}$ be a basis for $\operatorname{ker}(A)$ and $B:=\left[B_{1} B_{2} \cdots B_{n-d-1}\right]$. The configuration $\left\{\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}\right\}$ of row vectors of B is the Gale diagram of $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$.
Theorem (A.)
For any interior point $p \in \mathcal{M}$, the logarithmic Voronoi cell at p is combinatorially isomorphic to the dual of the polytope obtained by taking the convex hull of a vector configuration with Gale diagram B.

Corollary

Logarithmic Voronoi cells of all interior points in a linear model have the same combinatorial type.

Proposition (A.)

Every $(n-d-1)$-dimensional polytope with at most n facets appears as a logarithmic Voronoi cell of a d-dimensional linear model inside Δ_{n-1}.

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

$$
\begin{aligned}
& B=[-2,-1,1,2]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

$$
\begin{aligned}
& B=[-2,-1,1,2]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

$$
\begin{aligned}
& B=[-2,-1,1,2]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

$$
\begin{aligned}
& B=[-2,-1,1,2]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

$$
\begin{aligned}
& B=[-2,-1,1,2]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

$$
\begin{aligned}
& B=[-2,-1,1,2]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

$$
\begin{aligned}
& B=[-2,-1,1,2]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

$$
\begin{aligned}
& B=[-2,-1,1,2]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

$$
\begin{aligned}
& B=[-2,-1,1,2]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

$$
\begin{aligned}
& B=[-2,-1,1,2]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

$$
\begin{aligned}
& B=[-2,-1,1,2]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& B=[1,-5,3,1]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

$$
\begin{aligned}
& B=[-2,-1,1,2]^{T} \\
& c=(1 / 4,1 / 4,1 / 4,1 / 4)
\end{aligned}
$$

On the boundary

Theorem (A.)

Let \mathcal{M} be the d-dimensional linear model, obtained by intersecting the affine linear space L with Δ_{n-1}. Let $w \in \mathcal{M}$ be a point on the boundary of the simplex. If L intersects Δ_{n-1} transversally, then the logarithmic Voronoi polytope at w has the same combinatorial type as those at the interior points of \mathcal{M}.

Partial linear models

A partial linear model of dimension d is a statistical model given by a d-dimensional polytope inside the probability simplex Δ_{n-1}, such that not all facets of the polytope lie on the boundary of the simplex.

The intersection of the affine span of the polytope \mathcal{M} with the simplex Δ_{n-1} is a d-dimensional linear model \mathcal{M}^{\prime}. We say that \mathcal{M}^{\prime} extends \mathcal{M}.

Parial linear models

Proposition (A.)

Let \mathcal{M} be a partial linear model of dimension d with extension \mathcal{M}^{\prime}. If p is a point in the relative interior of \mathcal{M}, then $\log \operatorname{Vor}_{\mathcal{M}}(p)=\log \operatorname{Vor}_{\mathcal{M}^{\prime}}(p)$.

Let $p \in \partial \mathcal{M}$. Then $\log \operatorname{Vor}_{\mathcal{M}^{\prime}}(p) \subseteq \log \operatorname{Vor}_{\mathcal{M}}(p)$, but in general this containment will be strict.
Let F be a facet of \mathcal{M} and $p \in F^{\circ}$. How to compute $\log \operatorname{Vor}_{\mathcal{M}}(p)$?

- Treat F as its own partial linear model with extension F^{\prime} inside Δ_{n-1}.
- Then $\log \operatorname{Vor}_{F}(p)=\log \operatorname{Vor}_{F^{\prime}}(p)$ is an $(n-d)$-dimensional polytope.
- Note $\log \operatorname{Vor}_{\mathcal{M}^{\prime}}(p)$ divides the polytope $\log \operatorname{Vor}_{F}(p)$ into two $(n-d)$-dimensional polytopes, Q_{p} and \bar{Q}_{p}.
- Only of those polytopes, \bar{Q}_{p} will intersect the interior of \mathcal{M}.

Proposition (A.)

Let p be a point in the relative interior of some facet F of \mathcal{M}. Then $Q_{p}=\log \operatorname{Vor}_{\mathcal{M}}(p)$.

Partial linear models

What about other faces?

- Let F is a face of \mathcal{M} of dimension $d-k$ for some $k \geq 2$.
- F is the intersection of at least k faces $\left\{G_{1}, \cdots, G_{m}\right\}$ of dimension $d-k+1$.
- Each $\log \operatorname{Vor}_{G_{i}^{\prime}}(p)$ subdivides $\log \operatorname{Vor}_{F^{\prime}}(p)$ into two polytopes.
- One will intersect G_{i} at an interior point. Call the other polytope Q_{i}.

Conjecture

Let p be a point in the relative interior of a $(d-k)$-dimensional face F of \mathcal{M} as above. Then $\bigcap_{i \in[m]} Q_{i}=\log \operatorname{Vor}_{\mathcal{M}}(p)$. In particular, if \mathcal{M} is in general position, $\operatorname{dim} \log \operatorname{Vor}_{\mathcal{M}}(p)=(n-1)-\operatorname{dim} F$.

Mahalo!

